AI Coding 历史
- 2022 年:仅能完成单条代码补全
- 2023 年:可处理完整代码片段
- 2024 年:扩展至跨文件协作,可构建简单应用
- 2025 年:已能独立构建并重构完整代码库
- 快思考/直觉 -> 慢思考/推理
- 通过RAG把代码切碎了喂给 AI,AI 像管中窥豹,经常因为找不到上下文而改错 -> 百万级 Token 上下文 -> 全量代码库加载
- 只读文本 -> 多模态(具备了工具使用能力)
随着 AI 编程的普及,我们的开发模式经历了从“直觉探索”到“工程落地”的演进:
手写代码 -> 代码补全 -> Vibe Coding -> Spec-Driven
2025,中国AI-里程碑事件:
-
深度求索发布并永久开源DeepSeek-R1推理大模型,性能对标GPT-4o、Claude 3等国际顶尖模型,训练成本仅为后者的1/50,彻底摆脱行业「唯算力论」的路径依赖
-
人形机器人彻底走进大众视野,从宇树机器人登春晚扭秧歌,到全球首场机器人马拉松比赛,再到机器人格斗与辩论赛轮番出圈
-
中国团队自研的全球首个通用AI智能体Manus发布,可自主完成订票、数据分析、跨平台协同等复杂任务,最近已被Meta以数十亿美元完成全资收购
-
字节跳动旗下豆包App达成历史性突破,日活用户破亿,这是中文互联网首个亿级用户的原生AI助手,让AI从「科技尝鲜」变成「全民刚需」
-
豆包与中兴联手推出人类首款真正意义上的AI手机,核心突破是将大模型从应用层嵌入系统层,专属物理按键一键唤醒、屏幕感知交互、跨应用自动执行任务,让手机从通讯工具,升级为能读懂需求的个人智能助理
-
MiniMax与智谱相继通过港交所聆讯,同步冲击「全球大模型第一股」,MiniMax深耕C端多模态产品,海外收入占比超70%,智谱聚焦B端MaaS服务,本地化部署收入达84.8%
-
中国大厂AI转型的经典教科书:阿里躬身入局重仓AI,整合核心资源推出独立「千问」AI App,直面对标豆包打造核心入口;灵光、阿福、夸克等AI产品同步迭代,阿里系AI矩阵全面爆发
-
可灵&生数:视频生成「双子星」,改写全球格局;二者凭借自研技术,实现超高清、高帧率视频一键生成,效率提升百倍、成本直降90%;不仅替代国内大量影视广告团队,更获得好莱坞顶级创作者的规模化应用
Vibe Coding(氛围编程)
这是一种目前非常流行的、以结果验证为核心的交互式开发模式
Vibe Coding概述:

它指的是一种 “凭感觉、重交互、轻形式” 的 AI 编程方式
开发者使用自然语言(Human Language)作为主要的编程接口:
给 AI 一个模糊或大致的指令(Vibe),AI 生成代码,开发者运行并检查,如果不行就再聊两句修正
核心在于:快、流畅、低认知负担,适合写脚本、小工具或探索性代码
核心逻辑:由人类提供意图,AI 黑盒执行,并在项目环境中验证边界
工作流:抛弃逐行编写,直接下达指令 -> 观察运行结果 -> 感觉不对则调整指令 -> 感觉跑通了则提交
局限性:虽然它极速启动,能带来心流体验,非常适合原型开发
但它有“三大诅咒”,导致其无法构建生产级系统:
- 非确定性:同样的 Prompt,下次生成的代码结构可能完全不同
- 上下文遗忘:项目一旦变大,AI 记不住之前的逻辑,开始胡乱修改已有功能
- 隐性债务:为了快速获得“Good Vibe”,AI 可能会引入极其拙劣的实现方式,而在不做深度 Review 时很难发现
Vibe Coding发展时间线:

Vibe Coding分类体系:

Spec-Driven(规范驱动)
为了解决 Vibe Coding 的不可维护性,Spec-Driven Development (SDD) 应运而生
它是更传统的软件工程与 AI 的结合
它强调在写代码之前,先定义规范(Specification)、需求文档、接口定义或测试用例
核心在于:严谨、可控、适合复杂系统
单纯靠“聊”很难构建一个几万行代码的稳定系统,必须要有 Plan(计划)和 Spec(规范)
它强调“结构化方法”、“正式化”、“详细的实施计划”
它强迫你在生成代码前,先由 AI 辅助生成一份“蓝图”或“规范”,然后再去执行
核心定义:用形式化、详尽的文档(Spec)作为唯一事实来源,驱动 AI 生成代码
思维转变:在传统思维中,文档是代码的注释
而在 SDD 思维中,文档 (Spec) 是源代码,具体的代码 (Go/Java/Python) 只是 Spec 经过 AI 编译后的产物
SDD 的价值:
- 锁定上下文:Claude/Gemini 等模型能完美理解几十页的 Spec,保证逻辑一致性
- 前置质量把关:修改文档的成本远低于重构代码
- 可协作:Spec 是人类可读的显性知识,解决了“只有 AI 和上帝知道这代码怎么跑的”问题
工作流:
- Spec(定义规范):编写 Markdown:定义目标、API 接口、数据结构,以及最重要的测试标准(告诉 AI 如何才算“做完了”)
- Plan(生成计划):AI 根据 Spec 生成技术方案,例如:先建表 -> 再写 Service -> 最后写接口
- Tasks(拆解任务):将计划拆解为原子的、可执行的 Task 列表
- Implementation(执行与验证):AI 逐个 Task 执行代码编写,并自动运行测试用例,测试通过即任务完成
SDD 工具推荐:
Spec Kit (GitHub 官方):提供了 /specify (想法转PRD)、/plan (PRD转计划)、/tasks (计划转任务) 的完整工具链
核心思想是“规范即通用语言”
业务逻辑与人的价值
AI 懂 Go 语法,但它不懂“为什么充电桩的上报同步时间是 60秒 而不是 10秒”
业务逻辑包含大量未形成文档的隐性知识、历史妥协和人情世故
人月神话的预言在今天依然振聋发聩:
软件开发存在 根本困难 和 次要困难
“必要的是构思概念上的结构,次要指它的实现过程。”
AI 极大地消除了次要困难:语法细节、API 调用、样板代码、繁琐配置文件的编写
这是技术实现带来的附加复杂性,AI 对此是降维打击
但 AI 无法解决根本困难:对复杂业务概念的构思、对模糊需求的界定、对系统边界的划分
这是问题域固有的复杂性
引入 AI 后,这对人的要求反而更高了—我们需要更清晰的问题定义能力
AI 无法取代人,因为 AI 无法维护系统的概念完整性,无法对结果负责,也无法理解业务深处的语境
开发者角色的转变
- 从“实现者”变为“决策者”:
- 传统模式是:“思考逻辑 -> 查文档 -> 敲键盘 -> 调试”
- AI 模式则是:“定义意图 -> AI 生成 -> 审查逻辑 -> 验证测试”
- AI 更擅长的是实现,而人真正需要负责的,是:把一件事的边界、规则和目标说清楚
- 大量的写工作已经可以交给AI去处理
- 人更应该把精力放在 定义问题的边界、规则和目标,管理不确定性,提出有约束的创新方案上
- 以前我们 80% 的时间在做 Translator(把业务意图翻译成代码),处理的是“次要困难”
- 现在 AI 负责 Translation,我们必须回归 Architect 和 Product Owner 的角色,去解决“本质困难”
架构扩展
大模型训练概述:

Coding Agent架构:

Coding Agent能力列表:

Coding Agent的反馈循环框架:

商业AI辅助开发软件概述:
